
ICT394 Business Intelligence

Application Development

Dr Danny Toohey

ICT285 Databases

Dr Danny Toohey

Topic 08: Tuning the physical design

About this topic

• In this topic we look more closely at how the data in the database is
physically held on secondary storage. One of the responsibilities of
the DBA is to determine the optimal file organisations and indexes
that are required to achieve acceptable performance for the
important transactions. These work together with the inbuilt query
optimisation techniques of the DBMS to provide efficient processing.

Topic learning outcomes

After completing this topic you should be able to:

• Describe the activities in physical database design
• Describe some different types of file organisation used in

commercial DBMSs, and when each is appropriate
• Determine when secondary indexes are appropriate, and when they

are not
• Briefly describe how query optimisation works
• Describe in general terms how the hash, sort-merge and nested

loops join strategies work

Resources for this topic

READING

• My Unit Readings: Reading from Connolly & Begg (2004) Database Solutions,
Appendix D: File Organisations and Indexes

• Text, Chapter 7: SQL for Database Construction and Application Processing,
p351 (333 in 13th ed) CREATE INDEX

Oracle

• Indexes:
https://docs.oracle.com/database/121/CNCPT/indexiot.htm#CNCPT721

• Query optimisation:
https://docs.oracle.com/database/121/TGSQL/tgsql_optcncpt.htm#TGSQL192

https://docs.oracle.com/database/121/CNCPT/indexiot.htm#CNCPT721
https://docs.oracle.com/database/121/TGSQL/tgsql_optcncpt.htm#TGSQL192

Lab 8 –
Indexes and query optimisation in Oracle

• Indexes are used to provide improved access to database records.
Indexes are created automatically on columns defined as primary key,
and secondary indexes can also be created by the user on other
columns, including foreign keys. In SQL, creating a secondary index is
done using the CREATE INDEX statement.

• In this topic’s lab we’ll look at secondary indexes, and also how to
view and interpret Oracle’s query execution plans.

Topic outline

1. Tuning the physical design

2. File organisations and indexes

3. Query processing and query optimisation

1. Tuning the physical design

Reminder:
Physical database design

• Process of producing a description of the database implementation in
secondary storage

• Describes base relations, file organisations, and indexes used to
achieve efficient access to data. Also describes any associated
integrity constraints and security measures

• Tailored to a specific DBMS system

• The physical design process is where we concentrate on the efficient
implementation of our logical design

• It is important to note that efficiency for one operation often comes
at the expense of another (e.g., retrieval vs update)

A physical database design methodology - steps

• Steps from Connolly & Begg

Practice
In practice, this will be an iterative process as most steps involve
tradeoffs of some sort – and will continue throughout the life of
the database

Document Document the physical design

Monitor and
tune

Monitor and tune operational system

Consider
Consider the introduction of controlled redundancy
(denormalisation)

Design Design security mechanisms

Design Design user views

Design Design file organizations and indexes

Translate Translate logical data model for target DBMS

A physical database design methodology -
steps

1. Translate logical data model for target
DBMS

2. Design file organizations and indexes

3. Design user views

4. Design security mechanisms

5. Consider the introduction of controlled
redundancy (denormalisation)

6. Monitor and tune the operational
system

7. Document the physical design

Topic 7

This topic

• Steps from Connolly & Begg

2. File organisations and indexes

File organisations
Indexes

Choose file organisations and indexes

• This step deals with the method in which the data will be physically
stored on secondary storage

• Need to determine how to best organise the data in the files and the
indexes that we need to best be able to achieve the performance
metric for the important transactions such as:

- Throughput (how many transaction we get through), response
time (how long it takes for a transaction to be executed), amount
of storage required

• Transaction usage analysis (Topic 7) plus ongoing performance
monitoring

Logical and physical records

The tables we have designed are not
physically stored as tables

• Logical records are how we understand
the records are stored

• Physical records are the way in which
records are actually stored electronically,
as a collection of bytes

• Both physical and logical records can be
arranged in several ways

LR split across several PRs

PR containing LRs from

different tables

Related LRs on same PR

File organisations and indexes

• One vital part of physical database design is selecting the file structures that are
going to make our system work the best it can

• The base tables are able to be stored in a number of different file storage
structures:

• Heap
• Sequential
• Hash
• B-tree

• Indexes may be also assigned to select columns to aid processing requirements

•As indexes are themselves files, they too can be stored in different
structures

File organisations

• Heap

• Sequential

• Hash

• B-tree

• Cluster

Heap (Unordered) Files

Simplest kind of file organisation
New record comes in, goes into the file (physical record), in the order they are inserted.
Advantages:
• Insertion is going to be efficient because the record gets heaped on top of what’s already there

Thus
• Good at loading records in bulk because insertion is more efficient

Disadvantages:
• Searching becomes problematic because we need to search through all records until we find the

one we want. Thus at worst we might need to go through every single record we have to find the
record we want, known as a linear search

• Deletion of records also causes issues for various reasons. Firstly
- The record will be marked as deleted but the space is not deleted and not reused
- Performance will hinder since the system will search through each of the records even the

deleted records with an empty space. Thus continually deletion will cause a build up of
empty spaces

123-45-6789 Joe Abbot ...

788-45-1235 Sue Peters ...

122-44-8655 Pat Heldon ...

466-55-3299 Bill Harper ...

323-97-3787 Mary Grant ...

PR
1

PR
n

543-01-9593 Tom Adtkins

Insert a new logical

record in the last

physical record .

StdSSN Name ...

...
Heap (Unordered) Files

New record comes in gets shoved in at the end

Sequential (Ordered) Files

• Records are stored based on the value of a particular (ordering) field
Advantages-
• Searching (on the ordering field) is easier because it allows a binary search

which is much more efficient than a linear search. Since with binary search
you go to middle of file and look for the record you want and you either go
up or down and keep dividing it in half until you find record

Disadvantage-

• Insertion and deletion can be an issue since every insertion of a record
may require the moving of other records to make space. Thus, the order of
the records must be continuously maintained

• Usually used with an index – Indexed Sequential– see later slide

Ordered File – Record Insertion

123-45-6789 Joe Abbot ...

122-44-8655 Pat Heldon ...

788-45-1235 Sue Peters ...

466-55-3299 Bill Harper ...

323-97-3787 Mary Grant ...

PR
1

PR
n

543-01-9593 Tom Adtkins

Rearrange physical record

to insert new logical record.

StdSSN Name ...

...

New record comes other records may get rearranged

Ordered file – binary search

SA9 SG5 SG14 SG37 SL21 SL41

(1) (2)(3)

• Go to the middle record (1)

• Use the upper or lower half depending on search
value

• SG37 is > than SG14 so use upper half (2)

• Repeat until value is found (3)

SELECT * FROM Staff WHERE staffNo = ‘SG37’;

Hash Files

• In a hash file, records are not stored in any particular order on the
disk

• Hash file is a keep value look up, which when given a key associates
the key to a physical record address by some mathematical function

- This promotes an even distribution of records throughout the file

- The most common type is a division-remainder hashing

• The hash file organisation is commonly referred to as random or
direct

Hash files Disadvantages- Collisions

Collisions are where there are more than one record going to a single physical
record address. This is a result of hashing not guaranteeing a generation of a
unique physical record address. The process explaining collision is the following-

• Addresses that are created through hashing are called buckets with slots for
many records

• In a bucket, records are slotted in order of arrival. And
• Collisions occur when a record is trying to be slotted in a bucket that is filled
• Collisions can often deteriorate performance, so collision management

techniques are usually adopted with hashing

• Not ideal for retrieving ranges or pattern matching. Since difficult to calculate all
the additional hashes we are going need

• Less good when the hash column is updated often

Hash files Advantages

• Ideal for retrieving on an exact match because we are going to that
exact bucket

Hash File after Insertions
.

StdSSN StdSSN Mod 97 PR Number

122448655 26 176

123456789 39 189

323973787 92 242

466553299 80 230

788451235 24 174

543019593 13 163

122-44-8655 Pat Heldon

123-45-6789 Joe Abbot

PR176

...
PR189PR163 543-01-9593 Tom Adtkins

788-45-1235 Sue Peters
PR174

...
...

466-55-3299 Bill Harper
PR230

...

323-97-3787 Mary Grant
PR242

Example shows
Physical Record (PR) =
starting number (150) +
StdSSN Mod 97

Oracle: Indexed-organised tables

25

• Oracle (and others) index-organised tables are organised as a b-tree
structure
(more on b-trees in a later slide)

• There is thus no separate step to retrieve the record after going
through the index

http://docs.oracle.com/cd/B28359_01/server.111/b28318/schema.htm
#i23877

http://docs.oracle.com/cd/B28359_01/server.111/b28318/schema.htm#i23877

Clusters

• Groups of relations are stored together in the nearby or same data
blocks because the relations share common columns and are often
utilised together (e.g., in a join)

• For example, if we were clustering the ARTIST and WORK tables the
cluster key would be ArtistNo

Advantage-

• Improves the disk access time since the related records are held
physically closer together. Thus reducing number of time we access
the disk

Clustered
table data

27

Example from
http://docs.oracle.com/cd/B28359_01/server.111/b28318
/schema.htm#CNCPT608

cluster key is
department_id –
stored only once

http://docs.oracle.com/cd/B28359_01/server.111/b28318/schema.htm#CNCPT608

Indexes

• Indexes are secondary additional data structures that enable the DBMS to find particular
records in a file more quickly.

• Avoid using indexes for-
• Small relations because more efficient to search through entire relation
• Indexes must be constantly rebuilt from attributes frequently updated thus processing overhead
• Attributes consisting of long character strings
• An attribute where the search will result in a lot of rows of the attribute being retrieved. EG index

gender for men football team

• The index file contains:
• The search key value
• The address to the corresponding record in the data file

• The index file is organised by the search key value, in a particular structure (e.g.
b-tree, bitmap)

Advantages + Disadvantages of Indexes

Advantages-
• Improve performance for searches by reducing the need to do a linear search

for the record

Disadvantages-
• Insertion is performed worse since the addition of new records require index

to be updates thus indexes need to be regularly maintained which comes at a
processing cost

Indexes

• The index file contains:

• The search key value

• The address to the corresponding record in the data file

• The index file is organised by the search key value, in a
particular structure (e.g. b-tree, bitmap)

30

Staff SA9 Record

Staff SG5 Record

Staff SG14 Record

Staff SL37 Record

Staff SL21 Record

Staff SL41 Record

Page

1

2

3

SG5

SG37

SL41

SG37

SL41

Data File
Level 1 Index

Level 2 Index

SQL: CREATE, DROP INDEX

CREATE INDEX indexname ON tablename(columnname);

CREATE INDEX idxCustName ON CUSTOMER(CustName);

CREATE BITMAP INDEX idxCustName ON CUSTOMER(CustName);

DROP INDEX idxCustName;

Types of Indexes

• Primary index

• Applies to data file that is sequentially ordered by a unique ordering
key field

• Clustering index

• Applies to data file that is sequentially ordered, but ordering key field
is not unique

Secondary index

• Applies to non-ordering field of the data file

•A file can have at most one primary index or one clustering index, but can
have multiple secondary indexes

Indexed Sequential Files

Staff SA9 Record

Staff SG5 Record

Staff SG14 Record

Staff SL37 Record

Staff SL21 Record

Staff SL41 Record

Page

1

2

3

Sorted data file with a
primary index
• Records are able to be

processed sequentially or
accessed through the search
key value via the index

Advantages-
• Ideal for pattern match, exact matching, ranges, part

key matches. Because we are able to locate through
index

Disadvantages0
• Since the index is static, many insertions and updates

cause performance to suffer over time
• Need to reindex from time to time

Secondary indexes

• Index is established on a non-ordering fields

• Used for when-
• The foreign keys need to be accessed often

• Any attribute that is heavily used as a secondary key

• Attributes that are often in- WHERE clauses, Order By Group by or aggregate
functions

Avoid

• Secondary indexes can be in various file structures such as b-tree or
bitmap

Advantages + Disadvantages of Secondary Index

Advantage-

• The performance of queries that utilise attributes other than the
primary key are improved

Disadvantage-

• The improved performance of query is countered by increased
overhead in maintaining the index to keep it regularly updated with
the data file

Multilevel indexes

Staff SA9 Record

Staff SG5 Record

Staff SG14 Record

Staff SL37 Record

Staff SL21 Record

Staff SL41 Record

Page

1

2

3

SG5

SG37

SL41

SG37

SL41

Data File
Level 1 Index

Level 2 Index

• When an index becomes very large, there is reduced

advantage in searching it

• Multilevel indexes such as b-trees reduce search

time/effort by splitting the index into smaller indexes

• This can lead to very efficient retrieval

B-tree index

• Is a commonly used index structure supported by most DBMSs

• B-tree provides good performance on sequential search and good
performance on key search as well

• A B-tree file is a balanced, multilevel index

- Each node in the tree, except the root node, has one parent node and
zero or more child nodes

- Root node has no parents

- Node without children is called a leaf node

- The depth of the tree is the maximum number of levels between the
root and leaf nodes

Structure of a B-tree of depth 3

...

...

...

Level

0

Level

1

Level

2

Root

node

Leaf nodes

B-tree example

• To find SL21, we start from the

root node.

• SL21 is > SG14 alphabetically so

we follow the pointer to the right

which leads to SG37

• SL21 is > SG37 so we follow it to

the right and arrive at the leaf

node containing the address of

record SL21

SG14 ··

SG5 ·· SG37 ··

SA9 · SG5 · SG14· · SG37 ·· · SL21 ·· SL41 ·

Key 1 ·· Key 2

Pointer to another record

• If the search value is <= to
the Key value the pointer to
the left of the Key value is
used to find the next node to
be searched

• Otherwise, the pointer to the
right is used

B-tree: when to use (Advantages)

• Supports retrieval based on exact key match, range matching,
pattern matching (through links at leaf level), and partial key
specification

• Ideal with dynamic tables that change their size often. So they can
rebuilding their table quickly when data changes

Indexes in Oracle

Oracle supports the following types of indexes:

• B-tree indexes (default)
• B-tree cluster indexes
• Hash cluster indexes
• Reverse key indexes
• Bitmap indexes
• Bitmap join indexes

See
http://docs.oracle.com/cd/B28359_01/server.111/b28318/schema.htm#i567
1

http://docs.oracle.com/cd/B28359_01/server.111/b28318/schema.htm#i5671

The take aways…

• Designing the physical implementation of the database on the chosen
DBMS is a complex process

• The DBMS will have available particular file organisations for both the
data files and any index files

• Each file organisation has advantages and disadvantages for particular
circumstances

• Secondary indexes on non-key fields can be created to improve search
performance – again there are various general principles that apply

3. Query processing and query optimisation

Monitoring and tuning

• During the physical design phase we can’t determine how database is
running and how systems that’s access it are running. So we collect
performance statistics of the running system and database. Then we
come back and tune the database and the system if required

• One of the most important of the ongoing responsibilities of the DBA

• Sources of data for tuning include:

• reports by users

• the data dictionary (information about available indexes etc)

• Specific tools e.g. Oracle EXPLAIN PLAN

Query optimisation and processing

Query optimisation-

• The input such as SQL and statistics on the relations go into the optimiser

• The query optimiser generates multiple execution plans for the query based on storage structure, indexes of tables and join strategies
allowed for the DBMS

• The query optimiser compares and evaluate the different generated plans. The evaluation is usually a cost-based evaluation

• The final plan is selected, which is usually the plan with the lowest cost, is outputted and therefore eventually executed

Query processing-

• The DBMS retrieves our query and sends it to the query processor

• The query processor converts the SQL to a series of steps that are executed in a sequence.

• Therefore, the query processor is the component of DBMS that deals with executing a query input by the user

Query processing and optimisation

The query optimiser selects the best one to execute the query making use of the
existing tables and indexes

Optimisation techniques differ according to the DBMS, but can be:

• Rule-based, RBO (legacy) - query plans are judged according to a set of rankings
of different plans (e.g. if there is an index, use it)

• Cost-based, CBO (most common) – The query plans are compared based of the
evaluation of the different costs of each plan calculated using data distribution
statistics. Cost may be things such as:

• How many disk accesses are they going to be

• How much CPU time is used for (sorting, searching)

• What is the storage costs of intermediate files

• Network communication time (if database is distributed)

Cost-based

Cost estimation for a query will also depend on what's in the DBMS
data dictionary such as:

• Amount of records in each base relation

• Amount of disk blocks needed to hold the table

• For each attribute the amount of unique values in it

• The amount of levels in each index

• Selection cardinality of each attribute

Query execution plan

• Recall from the relational algebra that there are many different ways
of writing the same statement that imply different processing
sequences:

 FamilyName, GivenName
(NumberOfRooms > 3 (PROPERTY *P.OwnerNo=O.OwnerNo OWNER))

OR

 FamilyName, GivenName (OWNER*O.OwnerNo=P.OwnerNo (NumberOfRooms > 3
(PROPERTY)))

(red statement is done first, then blue, then black)

Query execution plan

We can show this in the form of a tree, read from the bottom up:

49

*T.OwnerNo=O.OwnerNo OWNER

NumberOfRooms > 3 (PROPERTY) -> TEMP

 FamilyName, GivenName

TEMP

Query execution plan

• The query optimiser generates possible query execution plans based
on the storage structures, indexes, etc, of the tables, and the access
routines such as join strategies available in the DBMS

• A plan is chosen based on some costing algorithm that also includes
statistics about the table data

General rules for query optimisation

Generate most efficient expressions for query processing by (using
relational algebra!)

Some general rules are:

• Use restrict operations as soon as possible because reducing
number of rows we need to join/search

• Select most restrictive restricts first

• Try to use projects early but only if possible

• Compute common expressions once and reuse

• Transform Cartesian product followed by restrict into join

Join methods

• For a DBMS there are various different strategies by which two relations
are joined and thus processed

• Nested loop

• Merge

• Hash

• The optimiser will consider the query, the table structures and the data in
the table to determine the optimal strategy

See Oracle documentation at
https://docs.oracle.com/database/121/TGSQL/tgsql_join.htm#TGSQL244

https://docs.oracle.com/database/121/TGSQL/tgsql_join.htm#TGSQL244

Nested loops join

• The relations are searched through by getting every record in the ‘inner’
table with all the records in the outer table and determining whether the
join condition is fulfilled
• (think first record in first table and match associated record in the second table. Then

go to the second record in the first table…)

Disadvantages-

• Inefficient solution when tables are not sorted and there is no indexes
Advantages-
• Ideal for small relations with indexes on the join conditions
• Better efficiency when the inner table has an index which is then used to

find matching records in the outer table

Sort-merge join

• Sort-merge joins are where both relations are stored in order on the
join fields thus the tables need to be only be scanned once each (in
parallel) to get matching records

• An index-merge join is the same as sort-merge but for each join
attribute there is an index assigned to it. Thus indexes are scanned
through in parallel

Advantages-

• Ideal for inequality conditions (<, >, etc) and equality conditions

Hash join

• The optimiser will select the smaller of the two relations to create a
hash table on the join key in memory.

• Once the hash table is created, the larger relation is scanned and the
optimiser performs the same hashing algorithm then probes the hash
table to retrieve the rows that satisfy the join condition

Advantages-

• Ideal when a lot of the table will be joined + the join is on equality

Oracle Query Optimiser

56
Image and discussion from ‘Query Optimiser Concepts’ at
https://docs.oracle.com/database/121/TGSQL/tgsql_optcncpt.htm#TGSQL94982

https://docs.oracle.com/database/121/TGSQL/tgsql_optcncpt.htm#TGSQL94982

Oracle Query Optimiser components

• Query Transformer

• Estimator

• Plan Generator

Image and discussion from ‘Query Optimiser Concepts’ at
https://docs.oracle.com/database/121/TGSQL/tgsql_optcncpt.htm#TGSQL94982

https://docs.oracle.com/database/121/TGSQL/tgsql_optcncpt.htm#TGSQL94982

Oracle Query Optimiser components

58

• Query transformer works out whether the query can be converted
into a more efficient one

• Estimator works out the overall cost of a given execution plan, based
on

• Cardinality (how many rows the query returns)

• Selectivity (percentage of rows the query returns)

• Cost (disk I/O, CPU, memory usage)

• Plan generator looks at various different plans for the query by trying
various access paths, join methods and join orders, then selects the
lowest cost plan

Image and discussion from ‘Query Optimiser Concepts’ at
https://docs.oracle.com/database/121/TGSQL/tgsql_optcncpt.htm#TGSQL94982

https://docs.oracle.com/database/121/TGSQL/tgsql_optcncpt.htm#TGSQL94982

Oracle: Example of plan generator

• Image and discussion from
‘Query Optimiser Concepts’ at
https://docs.oracle.com/database
/121/TGSQL/tgsql_optcncpt.htm#
TGSQL94982

https://docs.oracle.com/database/121/TGSQL/tgsql_optcncpt.htm#TGSQL94982

Choosing a plan

• The lowest cost plan is chosen using various heuristics – e.g. the best
plan in a given time; stop looking whenever a higher cost plan is
found; if a low cost plan is found, stop looking as improvements will
only be marginal

• Sometimes the plan selected will be suboptimal as it is chosen under
these constraints

• Adaptive query optimisation enables the optimiser to make run-time
adjustments to execution plans by taking into account additional
information that let it build a better plan

Oracle EXPLAIN PLAN

• The Oracle EXPLAIN PLAN utility allows the DBA to view the execution
plans the optimiser generates, in the form of a table showing the
objects, the operations on them, and the sequence

• The SQL to create the plan is:

EXPLAIN PLAN FOR [SQL statement];

• And to display the plan:

SELECT PLAN_TABLE_OUTPUT FROM
TABLE(DBMS_XPLAN.DISPLAY());

62

EXPLAIN PLAN FOR
SELECT * from ARTIST A, WORK W
WHERE A.ArtistID = W.ArtistID;

Execution plan with no PK or FK
indexes defined

63

EXPLAIN PLAN FOR
SELECT * from ARTIST A, WORK W
WHERE A.ArtistID = W.ArtistID;

Execution plan with PK indexes on
both tables and FK index on Work

The take aways…

• Monitoring and tuning the operational database continues
throughout its life

• Tuning involves the deliberate choice of physical design by the DBA
plus the inbuilt query optimisation features of the DBMS

• The query optimiser operates by creating alternative query plans and
evaluating them by their relative cost, calculated using current data
distribution statistics

• The query plan is available to the DBA through utilities such as
EXPLAIN PLAN

Topic learning outcomes revisited

After completing this topic you should be able to:

• Describe the activities in physical database design
• Describe some different types of file organisation used in

commercial DBMSs, and when each is appropriate
• Determine when secondary indexes are appropriate, and when

they are not
• Briefly describe how query optimisation works
• Describe in general terms how the hash, sort-merge and nested

loops join strategies work

What’s next?

Databases are designed to be a shared resource, and it is essential to maintain the integrity of
the database when multiple users are accessing it, or if the system crashes. In the next topic
we look at how the DBMS handles concurrency management and recovery.

Central to both concurrency management and recovery is the idea of the transaction as a
single logical unit of work.

